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Phyllotaxis as a Dynamical Self Organizing Process

Part I: The Spiral Modes Resulting from Time-Periodic Iterations

S. D  Y. C

Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Received on 12 January 1995, Accepted in revised form on 15 August 1995)

This article is the first of a series of three in which the various phyllotaxic modes are shown to result
from successive iterations of two possible simple dynamical systems. In this first part the hypotheses
put forward by Hofmeister (1868) for the formation of primordia are re-examined and shown to form
the rules of such a system. By means of a physics experiment and a numerical simulation, it is
demonstrated that this system gives rise to the self organization of the spiral phyllotactic structures.
The dynamic is controlled by only one parameter, G, equivalent to Richards’ plastochrone ratio (1951),
which characterizes growth. The diagram representing the values of the divergence angle as a function
of the plastochrone ratio resembles that obtained geometrically by van Iterson (1907). In the present
results, however, only one branch of solutions is continuous for all values of G; this difference with
the geometrical results is important. The predominance of Fibonacci order in botany is related to this
continuity: during the ontogeny, because of the continuous decrease in G, only this branch is followed.
In this framework the build-up of such complex structures as the inflorescence of compositae is
described.
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1. Introduction

Phyllotaxic patterns are generated whenever a
vascular plant repeatedly produces similar botanical
elements at its tip (leaves, bractae, florets etc). These
patterns are surprisingly regular, so regular in fact
that a physicist can compare their order to that of
crystals. The observed organizations are classified in
only two categories. In the first, formed of the
distichous and spiral modes, the leaves appear one at
a time along the stem. The striking peculiarity of this
family is that it is directly related to the Fibonacci
series and the golden mean. In the second, constituted
of whorled modes, a constant number of leaves
appear simultaneously at the same height on the stem
and form successive whorls.

The investigation of phyllotactic patterns has a
long history and was undertaken from several
viewpoints. Recent reviews on this subject can be
found in Williams (1975), Jean (1984, 1994) Steeves &
Sussex (1989), Lyndon (1990), Sachs (1991) and
Medford (1992). Three main lines of thought can be

recognized in the history of phyllotactic studies, each
of them having brought major contributions to their
understanding.

 

The first investigations resulted from the direct
observation of the arrangements of the elements on
mature plants. Since the early works of Schimper
(1830), Braun (1831, 1835), Bravais & Bravais
(1837a, b, 1839), Airy (1873) and van Iterson (1907),
the analysis of the geometry of the patterns has been
aimed at a characterization of the observed spiral and
whorled organizations of mature stems. More recent
works in this domain were done by Erickson (1973),
Rivier (1988) and Rothen & Koch (1989). This type
of approach provided an analysis of the very specific
properties of these dispositions. In particular, it was
found that two different descriptions of the spiral
order could be given. If the elements are linked in
their order of appearance, the resulting curve forms
a spiral (or a helix) called the generative spiral.
Projected in the plane perpendicular to the stem, the
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divergence angle 8 between the base of two successive
elements is constant and generally has a value close
to F=2p(2−t)=137.5°, where t is the golden mean
t=(−1+!5)/2. In the second description, two sets
of intersecting spirals are defined by linking each
element to its nearest (or contact) neighbours. The
numbers i and j of these spirals (the parastichies)
around the stem are generally two successive terms of
the main Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21, 34,
. . . , in which each term is the sum of the two previous
ones (the first two terms being 1 and 1). The Bravais
brothers (1837a), showed that if the divergence angle
8 was assumed to be equal to the ideal angle F, the
parastichies were then necessarily two consecutive
Fibonacci numbers and that their particular values
only depended on the longitudinal elongation of the
stem. Airy (1873) was the first to consider the piling
of elements of finite size instead of point like particles.
In order to study the effect of a compression on a
cylindrical piling he implemented an original system.
He glued identical spheres onto an extended rubber
band alternately on each side of the band (i.e. in a
distichous disposition) and then slowly released the
tension. As a result he observed transitions to the
spiral modes (1, 2) and (2, 3). Inspired by this work,
van Iterson (1907) systematically investigated the
phyllotactic patterns obtained by paving a surface
with solid elements, e.g. equal disks on a cylinder. He
thus introduced a new parameter, the ratio b of the
diameter of the disks over the perimeter of the
cylinder. Without any other assumption he showed
that, for a given value of b, spiral organizations were
possible, corresponding to a series of well-defined
values of 8. These values are a function of b, and the
number of different possibilities increases with
decreasing b, so that the graph 8(b) has the shape of
a complex tree.

  

A different approach was initiated when the apical
region, where the formation of the primordia takes
place, was observed using microscopic techniques.
This led to consideration of the problem of how the
phyllotactic structures appeared. Hofmeister (1868)
was the first to systematically observe the apical
region and to state general dynamical principles that,
he suggested, led to the formation of the observed
patterns. A smooth region of undifferentiated tissues,
the apex is situated at the extremity of the shoot.
Around it specific mitotic activity creates small
protrusions, the primordia, which already form
conspicuous parastichies and will evolve into various
types of botanical elements: leaves, bracts, sepals,
petals, stamens, florets etc. In the reference frame of

the apex, because the shoot grows with velocity U, the
existing primordia drift away from the tip with a
velocity V so that they leave room for the formation
of new elements [Fig. 1(a)]. Hofmeister (1868)
proposed that this inception is periodic in time and
that the new primordium appears in the largest
available space. The position of this primordium
around the apex thus results from the position of the
previous ones. Inspired by van Iterson’s work, Snow
& Snow (1952) tried to adapt Hofmeister’s dynamical
rules to the appearance of elements of a given finite
size. Some of their experiments [Snow & Snow (1935)]
also showed that there was a connection between the

F. 1. Definition of the parameters of the apical growth. (a)
Scheme of the botanical situation: given the growth of the shoot
at velocity U, the resulting velocity at which the primordia move
away from the tip is V. The incipient primordium is represented in
black. It forms at the periphery of the apex of radius Ro , shown
in grey. (b) The plane model of the apex. The position of the new
primordium of appearance number n is defined relative to the
previous one (of number n−1) by the divergence angle 8 and by
the ratio of their distances to the centre: a=rn−1/rn (Richards’
plastochrone ratio). The radial motion of each particle V(r) and the
field lines of its repulsive potential E(d) are indicated.
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whorled phyllotactic modes and the spiral ones. They
thus suggested (Snow & Snow, 1962) removing the
imposed periodicity of the process: a new primordium
simply forms where and when there is enough space
for its formation.

An important step in relating quantitatively the
dynamics of the growth to the geometry of the
resulting spirals was taken by Richards (1951) who
introduced the plastochrone ratio a, a parameter of
fundamental importance to quantify the growth and
which will be described below.

Finally a completely different set of hypotheses was
put forward by Plantefol (1948), in which he gave a
specific role to one of the set of parastichies that he
called foliar helices. These hypotheses, however, did
not deal with the fact that the number of parastichies
follow the Fibonacci series; they cannot, therefore, be
used here. In fact, as we will see, they do not seem to
be compatible with the minimal hypotheses necessary
to get this type of ordering (see Section 5).

    

A third direction for research was aimed at the
determination of the physiological processes respon-
sible for the interaction between the primordia.
Several models were put forward in which the
interaction was ascribed to the contact pressure
(Schwendener, 1878; Airy, 1873; van Iterson, 1907;
Church, 1904; Adler, 1974; Williams & Brittain,
1984), to the diffusion of an inhibitor (Schoute, 1913;
Wardlaw, 1968; Mitchison, 1977), to a reaction–
diffusion process (Turing, 1952; Meinhardt, 1974;
Veen & Lindenmayer, 1977; Young, 1978; Chapman
and Perry, 1987) or to a buckling instability due to a
differential growth of the apical surface (Green,
1992). All these types of interaction create either a
repulsion or an inhibition between primordia so that
the incipient primordium will form as far away as
possible from the previous ones and thus in the largest
available space. They are, therefore, compatible with
the dynamical principles defined both by Hofmeister
(1868) and by Snow & Snow (1952).

These three main points of view are complementary
and a complete understanding of the phyllotactic
processes will require a synthesis of results obtained
along these three directions of research. The link
between these different approaches is obvious: the
geometry of the patterns results from a dynamic of
formation and this dynamic is created by interactions
caused by physiological processes. The actual
physiological process involved is not yet identified
with certainty, but most of those that have been
suggested result in similar types of interactions. It is
thus possible, and justified, to examine the resulting

dynamics per se. This is our limited aim: we are
concerned here with the minimal dynamical hypoth-
eses necessary to give rise to the phyllotactic patterns.
In this first article we thus return to the hypotheses
of Hofmeister (1868) and in the second and third
(Douady & Couder, 1996a, b) we will revisit those put
forward by Snow & Snow (1952). It must be kept in
mind, however, that even if we are successful in
realistically reproducing the build-up of the phyllo-
taxic patterns, the underlying physiological processes
will still have to be identified.

2. The First Iterative Model

The remarkable feature of the dynamical hypoth-
eses is that they do not have any specific effect directly
caused by the biological nature of the system. Rather,
they define the principles of an iterative system, in
which the repeated application of the same rule gives
rise to the successive states. Our aim was to see
whether these principles were able, by themselves,
to produce the spiral organizations hitherto only
observed in plants. We thus tried to find a
non-biological system reproducing the dynamical
characteristics given by Hofmeister’s hypotheses
[preliminary results can be found in Douady &
Couder (1992, 1993)]. In order to implement both a
laboratory experiment and a numerical simulation,
we used a simplified model of the apical meristem
[Fig. 1(b)] and retained the following characteristics:

First set of Hypotheses (Hofmeister, 1868)
—The stem apex is axisymmetric.
—The primordia are formed at the periphery of the

apex and, due to the shoot’s growth, they
move away from the centre with a radial
velocity V(r).

—New primordia are formed at regular time
intervals (the plastochrone T ).

—The incipient primordium forms in the largest
available space left by the previous ones.

—Outside of a region of radius R0 there is no
further reorganization leading to changes of
the angular positions of the primordia.

In the first series of experiments and numerical
simulations we will limit ourselves to situations where
the apical meristem is planar and the primordia have
circular symmetry. The fact that the same phyllotactic
arrangements are observed for different transverse
profiles of the apical meristem suggests that its
conicity is not a parameter of prime importance (this
statement will be re-examined in Part II (Douady
& Couder, 1996a). In order for the new element to
appear in the largest available space, we assume that
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it is submitted to repulsive forces generated by the
previous elements. This is just the simplest physical
implementation of this rule, but it does not mean that
there is necessarily a physical force between the
primordia: an inhibitory interaction would have an
equivalent effect, and so would the interaction of the
successive bulges of a buckling instability. In the
numerical simulations, this can even be considered as
a simple way to easily find the largest space.

In botanical reality the primordia do not change
angular position after their formation, and their later
motion is purely radial. This condition is important
in order to obtain phyllotactic patterns. If long-term
reorganizations were allowed, the lattice of repelling
elements would tend to form a hexagonal pattern with
some dislocations. We will see that in the experiment
this absence of late interactions does not have to be
imposed: the radial motion is sufficient to lead the
elements apart from each other so that their
interaction vanishes. Finally, in botanical reality, the
growth near the apex is exponential so that the
velocity V(r) is proportional to r.

3. The Experiment

3.1.  

The experimental set up [described in more detail
elsewhere (Douady & Couder, 1992, 1993)] consists of
a horizontal teflon dish of diameter 8 cm filled with
silicone oil, placed in a vertical magnetic field (Fig. 2).
This field H(r) has a weak radial gradient: it is
minimal at the centre and maximal at the periphery.
The primordia are simulated by drops of ferrofluids.
These are liquid suspensions of magnetic particles and
have the properties of a ferromagnetic fluid. A drop

of ferrofluid placed in a magnetic field is polarized
and forms a small dipole with its moment parallel to
the field. In the present experiment, a drop deposited
at the centre of the dish forms a dipole with a vertical
moment which is attracted towards the region of
maximum field. The drop thus spontaneously drifts
from the centre to the border of the dish with a
velocity V(r) limited by the viscous friction of the oil.
Drops of equal volume (v110 mm3) can be deposited
with a tunable periodicity T at the centre of the cell.
As these drops form identical parallel dipoles they
repel each other with a force proportional to d−4

(d being their distance).
In this system the radial motion of the drops

replaces growth, and their periodic introduction
simulates the periodicity of the primordium for-
mation. Furthermore, the repulsion caused by the
previous drops forces the new one to place itself in the
largest available space at the periphery of the central
region. We have thus realized a system where all but
one of the necessary characteristics have been
reproduced. The only problem is that, in order to
avoid breaking the symmetry of this experimental
system, it is necessary to introduce the elements at the
centre instead of at the periphery of a circle. For this
reason the bottom of the cell was built with a small
central bump which makes this position unstable for
the new drop: it thus moves swiftly away from the
centre. Moving down from this bump, the new drop
falls in the direction resulting from the repulsion of
the previously deposited drops.

The experiment is observed from above with a
videotape camera. The recordings show the pattern
formed by the drops as well as the trajectory of each
drop. A superposition of video tape images taken at
different times shows that in a central region of radius
Rc , some organization of the pattern takes place, but
that outside this region (rqRc ) the drops have only
a radial motion as they have moved too far away from
each other to interact.

3.2. 

In practice the experimental control parameter is
the periodicity of the fall of the drops. For a given
value, after a short, transient period, steady regimes
are reached and the positions of the successive drops
form reproducible patterns. For large values of T
[Fig. 3(a)] a given drop, after its fall, is repelled only
by the previous drop because, all the others having
moved far away, their repulsion is negligible. Each
drop moves away in the direction opposite to the
previous one. The divergence angle is thus 8=180°
and the pattern corresponds to the distichous mode
which is common in botany. If the periodicity T is

F. 2. Sketch of the experimental apparatus. Drops of ferrofluid
are used to simulate the primordia. The drops (of volume
v110 mm3) fall with a tunable periodicity T at the centre of a
horizontal teflon dish. The vertical magnetic field H is created by
two coils in the Helmholtz position. The dipoles are radially
advected with velocity V by the magnetic field gradient (controlled
by the currents I1 and I2 in the two coils). The drops ultimately fall
into a deep ditch at the periphery, designed to prevent
accumulation.
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F. 3. Three photographs (seen from above) of typical
phyllotactic patterns formed by the ferrofluid drops for different
values of the control parameter G. The drops are visible as dark
dots. The tube for the ferrofluid supply partially hides the central
truncated cone. The drops are numbered in their order of
formation. (a) For strong advection, G11, each new drop is
repelled only by the previous one and a distichous mode is
obtained, 8=180°. (b) Below the first symmetry breaking
bifurcation (G10.7) the successive drops move away from each
other with a divergence angle 8=150° (shown between drop three
and four). They define an anti-clockwise generative spiral (dashed
line). The parastichy numbers correspond to (1, 2). (c) For smaller
advection (G10.1) higher order Fibonacci modes are obtained.
Here 81139° and the parastichy numbers are (5, 8).

the first two (see also Figs 6 and 7). This is a symmetry
breaking bifurcation which selects once for all the
direction of winding of the generative spiral. A steady
regime is reached later with a constant divergence 8

[in Fig. 3(b) 8=150° and two parastichies i=1, j=2
are observed]. For smaller T, the new drop becomes
sensitive to the repulsion of three or more previous
drops, and the divergence gets nearer to F. In
Fig. 3(c), 8=139° and the Fibonacci numbers
are i=5, j=8. The spiral mode obtained in this
non-biological system is strikingly similar to a very
usual organization observed in botany.

3.3. 

The observed patterns, in fact, do not depend only
on T, but also on Rc the radius of the circle outside
of which the angular position of the particles is fixed,
and on the advection velocity Vo (controlled by the
magnetic field gradient). The only relevant parameter
is in fact adimensional and defined by G=VoT/Rc . It
is the ratio of the two typical length scales of the
system, one corresponding to the radial displacement
of the elements during one period and the other
defining the size of the central region. This parameter
is directly related to the plastochrone ratio, a, which
was introduced by Richards (1951). This author
showed that the apical growth could be characterized
by the ratio a=rn−1/rn of the distance of two
successive primordia to the centre. This ratio is easily
measured on transverse sections of apices. The
relation between a and G is simple because the growth
near the apical region is exponential. As V(r) A r and
V(Ro )=Vo , the distance of a primordium to the
centre at time t is: r=Ro exp(Vot/Ro ) and its velocity
V=Vo exp(Vot/Ro ). The resulting plastochrone ratio
is a=rn−1/rn=exp(VoT/Ro ) and our parameter G is
simply: G=Ln(a). This parameter had been used
previously in botanical cases by Meicenheimer (1979)
and by Rutishauser (1982).

The only precise way of measuring G both in plant
growth and in our experiment is to deduce it from
a=rn+1/rn . In plants, obtaining G from measurements
of Vo , T and Ro would be more difficult and less
precise than deducing it from the geometry of
transverse sections. In our experiment Vo and T are
known with precision, but there is ambiguity on the
choice of Ro because the drops are introduced at
the centre of the cell. If we deduce a value of Ro from
the measured plastochrone ratio we find that, in all
cases, Ro is equal to Rc the radius of the circular zone
out of which there is no further reorganization and
change of 8. This result could have a meaning in
botany. It is well known that the angular positions
of the primordia become rapidly fixed at the apex

decreased, a remarkable evolution of these patterns
takes place. Below a threshold value each new drop
becomes sensitive to the repulsion of the two previous
drops and can no longer remain on the radial line
formed by them. In such a case the third deposited
drop slides to one of either side of the line formed by
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periphery and do not change during the later growth
of the stem. This does not, however, preclude slight
changes of 8 at a very early stage by asymmetrical
growth of a primordium. There has also been some
discussion about when exactly (i.e. at which radius)
the growth of primordia starts, and where its position
becomes fixed. From the dynamical point of view the
only relevant length scale is the radius Rc such that for
rqRc there is no change of 8. Our experiment shows
that this is the length deduced from the measurements
of the plastochrone ratio. If the botanists could
measure both V and T, the radius Rc could be directly
derived from the plastochrone ratio. It would then be
interesting to compare it to the apparent apex radius.

The values of G obtained in the experiment range
from 1 [Fig. 3(a)] to 0.1 [Fig. 3(c)]. We can note that
in our laboratory experiment a value of G=1 is
obtained with Vo11 cm s−1, T11 s and Ro11 cm. In
botany, Ro and T can be measured directly and Vo can
then be deduced from measurements
of the plastochrone ratio of the type done by
Schwabe (1971), Williams (1975) and Erickson &
Meicenheimer (1977). Revisiting their data, the orders
of magnitude of each of these variables can be esti-
mated. They are completely different from those of
the laboratory experiment but they result in similar
values of the adimensional combination G. For
instance G=1 can be reached in plants with such
typical values as Vo110−3 mm s−1, T1105 s and
Ro1100 mm. This is the reason for which, even
though our experiment appears so different from the
botanical situation, the same organizations can be
obtained. We will present our results as a function of
G. It can be noted that they could also be
conveniently plotted as a function of Ln(G) which is
Ln[Ln(a)] [Richards, 1951, actually used log10(G)].
With this latter variable the domains of existence of
the successive phyllotactic modes would be approxi-
mately equal. This corresponds to the observation
of van Iterson (1907) and Richards (1951), which
led the latter to introduce a plastochrone index
P.I.=0.379–2.3925 log10[log10(a)]. The integer nearest
to the value of this index gives the order of
the parastichy system. We will not use this system as
it is only an approximation relying on the assumption
that the divergence angle 8 is exactly equal to F.

4. The Simulation

4.1. 

The simulation permits a further simplification and
thus corresponds more strictly than the experiment
to minimal hypotheses. Like the experiment, it is

performed in a plane radial configuration. The locus
of appearance of the elements is a circle C of radius
Ro centred at the origin. The elements are point-like
particles, each generating a repulsive energy E(d)
where d is the distance to the particle. To be
compatible with botanical observations, all the
elements, after their formation are given the same
radial motion with a velocity V(r). We thus do not
allow any possible reorganization by later inter-
actions between the particles. The repulsive energy
can be considered here as being simply a way to
compute the largest space left by the other particles:
its only consequence is the decision of where the new
element will be placed. The whole organization thus
occurs only on the circle when a new element is
formed.

The most important possibility opened by the
numerical simulation is the choice of the criterion for
the appearance of a new particle.

We can simulate the Hofmeister principles (and
thus the experiment) by imposing a temporal
periodicity T to the formation of a new element. In
order to decide the place of appearance of the
incipient particle at each period T, we compute the
value of the total energy caused by the previous
particles along the circle C. The new element is placed
at the point of the circle where this energy is at its
minimum, corresponding to the largest possible
space. It can be noted that the potential at this
minimum does not have a fixed value, so that the size
of the available space around it is not fixed either.

We can also simulate the iteration principles
deduced from the Snows’ hypothesis, something
impossible to implement in our experiment. In this
latter case, to be presented in Parts II and III (Douady
and Couder, 1996a, b), the time of formation of the
elements will be left free but the potential at which the
formation occurs will be fixed.

It is also possible in the simulation to investigate
the effect of different velocity laws: most simulations
were done with V(r) increasing linearly with r
[i.e. V(r)=Vor/Ro], a dependence which corresponds
to the exponential growth observed in plants near the
apical meristem. Other V(r) dependences, however,
were explored [V(r)=Vo or V(r)=VoRo /r]: the results
are qualitatively the same. Different types of energy
laws E(d) were also used, such as 1/d, 1/d 3 (which is
the interaction between the ferrofluid drops), and
exp(−d/l): again we found qualitatively the same
results.

Finally, we can also explore the role of initial
conditions and the transient regimes. Before the
beginning of the iterations we can place a certain
number of initial particles in chosen positions. In this
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F. 4. The possible steady regimes obtained in the numerical simulation. (a) Diagram of the values of the steady divergences 8 obtained
in the simulation as a function of G (triangles). Each point represents a value of the divergence obtained in the simulation when the system
has reached a steady regime. For some of the values of G this sometimes required up to 400 iterations. The velocity corresponds to an
exponential growth and the energy profile is E(d)=1/d 3. The thin lines are the results of the geometric approximation where the new particle
is assumed to appear exactly equidistant from two older ones. They form a diagram similar to that obtained by van Iterson. (b) Detail
of a bifurcation showing the effect of a change in the interaction law (−) E(d)=1/d, (r) E(d)=1/d 4, (W) E(d)=exp[−d/l] with l=0.01.
Continuous line: geometric approximation.

way, we can reach all the stable modes of the iterative
system.

The numerical simulations were done on
Macintosh computers MIIfx, Quadra 950 and
Quadra 840 av. The programme was written in Think
Pascal (18 pages, mostly used for the presentation).
The only task is to find the minimum of the repulsive
potential caused by all the previous elements at the
imposed time. To do so, we first compute the
potential on a discrete set of points on the circle. The
point where the potential is minimum is then picked
up, and again a discrete set of points around it taken.
We then repeat this procedure several times until the
required precision (typically 0.1°) is reached. To be
sure that the first point chosen is close to the absolute
minimum, it is sufficient to take an initial number of
points 20 times larger than the number of primordia
which are close to the apex boundary [typically i+j
for an (i, j ) spiral pattern].

The potential is computed by adding up the
contributions of a limited number of previous
elements. This number is chosen so that the result
does not change if a larger number is taken. It
depends on the pattern, and on the chosen potential.

Typically two or three times (i+j ) are more than
enough for an (i, j ) spiral pattern. We add up the
contributions of the elements by inverse order of
appearance, from the youngest to the oldest. To speed
up the search for the point closest to the minimum
potential, we keep in memory the smallest potential
already computed for the previous iteration. The
summation is stopped as soon as the value obtained
is larger than the recorded minimum. After an
optimization of the programme, typically one minute
is enough to compute two hundred iterations.

4.2. 

The first result is that the simulation, like the
experiment, mostly leads to steady regimes. For each
given value of the parameter G there exists one or
several situations for which each element is formed at
a constant divergence angle 8 from the previous one.
When there are several possible regimes with different
values of 8 for the same value of G, the one which
actually appears depends on the initial conditions, or
on the transient which has led to this value of G. We
will see that the ontogeny of the plant imposes specific
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transients and thus a selection from these possible
solutions.

In order to explain the spiral structures observed
in botany we will first examine all the possible
permanent states of the simulation and then return
to the botanically relevant transients resulting
from continuous time variations of G(t) during
ontogeny.

The permanent regimes

The simulation permits very long iterations (e.g. the
successive formation of 400 particles) so that steady
regimes are reached. We represent these states in a
8(G) diagram [Fig. 4(a)]. For large values of G the
position of each particle is determined by the
repulsion of the previous one so that the distichous
mode with 8=180° is observed. As in the experiment,

at a well-defined threshold value Gc , the alternate
mode, ceases to be stable. Below this value two spiral
modes become possible with 8Q180° and 8q180°,
respectively, corresponding to the two opposite
directions of winding. Near the threshold of this first
bifurcation, the divergence 8 varies as
=180°−8 = A (Gc−G)1/2, and the number of iterations
(i.e. of particles) necessary to reach a steady regime
diverges. These are the characteristics of what is
called, in the dynamical systems
terminology, a symmetry breaking bifurcation.
In the present case the system acquires chirality as
it goes from an alternate pattern to a clockwise
or anti-clockwise spiral pattern. From now on
we will only describe the modes with one direction
of winding (Fig. 4). It must be kept in mind
that each of them has a symmetric with opposite
chirality.

F. 5. Typical patterns obtained in the numerical simulation (with an exponential growth). The computed positions for the primordium
centres are shown at a given instant with small circles (the parastichies and the apex radius were drawn for an easier visualization of the
structure). At the bottom of each figure a plot gives the evolution of the divergence angle 8 with the number of deposited particles. (a)
Pattern obtained after a transient from G=1 (distichous mode), to a constant value G=0.01, in a characteristic time of six plastochrones.
The final divergence steady angle is 8f=137.47° and the parastichy numbers are (13, 21). The transient is clearly visible on the plot of
the divergence: the first two particles are opposite each other, then the divergence converges quickly towards 137.5°. (b) Pattern with
secondary organization (11, 18) of the Lucas series obtained after a transient in the value of G from an initial value G=0.3 down to G=0.01.
The steady divergence angle is 8l=99.49°. The plot of the divergence shows two anomalies where successive values 81−162°, −99° and
−162° are observed. This corresponds to a permutation in the order of appearance of elements n and n+1 (giving the sequence . . . n−1,
n+1, n, n+2, . . .). The successive measured divergences are thus 8l , 28l [2p], −8l , 28l [2p]. The anomaly of the pattern resulting from
these inversions is not visible.
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For smaller values of G, the obtained regimes
depend on the initial conditions used to run the
simulations. Three types of conditions can be used:

(1) An impulsive start, the simulation beginning
directly at the studied value of G, with no initial
elements.

(2) An imposed transient condition using a continu-
ous change of G. For botanical relevance, we start
from a large value of G and then decrease it to a
constant value.

(3) A forced condition using a particular initial
symmetry. We initially create an artificial pattern
with a given number of particles, and observe
whether it can keep growing. This allows the
study of the limits of existence of all the possible
steady solutions.

Figure 4 shows 8(G) for all the steady regimes that
we could obtain in our simulations. The main feature
of this diagram is that the number of different possible
solutions increases with decreasing G. These solutions
form disconnected curves in the diagram. Only one of
these curves is continuous for all values of G; all the
others exist only below a limit value of G. For this
reason, when initial conditions resulting from a
continuous decrease of G are used, the resulting
divergence is always on this main curve. Along this
curve, when G tends to zero, 8 converges oscillatingly
towards F. At a given value of G, the observed
pattern has two parastichy numbers i and j (with jqi )
which are consecutive numbers of the Fibonacci
series. Figure 5(a) shows a disposition obtained at
G=0.01 where i=13 and j=21. Inspection of the
patterns obtained for decreasing values of G shows
that near each extreme of the oscillation of the curve,
the pattern becomes locally hexagonal so that three
sets of parastichies can be observed: (i, j, i+j ). This
corresponds to the value Gij for which there is
transition from the parastichy pair (i, j ) observed at
GeGij to the next ( j, i+j ) which exists at GEGij . The
convergence of 8 towards F=137.508° results from
these successive transitions.

The other solutions on the secondary curves of Fig. 4
can be reached when a small value of G is imposed
directly at the initial time. These secondary curves have
a structure similar to the main one: along each of them
a succession of bifurcations is observed, having the
same rules of transition from (i, j ) to ( j, i+j ). They
also correspond to Fibonacci types of series, the
difference being that they are built with different initial
terms. For instance, the second possible branch
corresponds to theLucas series, which startswith 1 and
3: {1, 3, 4, 7, 11, 18, . . . } Fig. 5(b) shows a pattern
obtained on this branch at G=0.01 with parastichy

order (i=11, j=18) and 8=99.49°. Each of the
branches of the diagram shown on Fig. 4 converges
towards one of the irrational angles (99.502°, 77.955°,
151.135°, etc.) related to the golden mean, listed by
Bravais & Bravais (1837). In order to investigate the
limits of existence of each solution, we forced initial
artificial patterns and observed whether they could
keep growing. Using this technique we found that,
except for the main one, all the curves shown on
Fig. 4 are interrupted above a limiting value of G. At
this limiting point, a particular parastichy can be
observed, say (i, i+j ). It can then be noted that the
point for which this secondary curve ceases to exist is
always in the 8(G) diagram close to the point 8(Gij ) of
another curve, where there is a transition from (i, j ) to
( j, i+j ).

For very small G and an impulsive start, the system
undergoes long transients. It can converge on a steady
regime with a constant divergence angle correspond-
ing to one of the solutions described above. But in
most cases it generates a periodic repetition of a
sequence of different divergence angles (the smaller G,
the longer the periodicity). In most cases however, the
resulting pattern is similar to a regular pattern with
only permutations of the appearance order of some
primordia. An example of such permutations is seen
on the bottom of Fig. 5(b). We will return to this
problem in Section 5.4.

More complex patterns can also be observed.
Their parastichy orders can be for instance of the type
2(i, j ) so that the spatial pattern looks like a bijugate
mode (Douady & Couder, 1993). These cases are
imperfect because, unlike in the botanical situation,
the primordia cannot appear exactly at the same time
(by construction of the model). They do, however,
mark the proximity of other possible types of
organization that will be reached when the rules
proposed by Snow & Snow are used (Douady &
Couder, 1996a, b).

Finally, we can note that sets of simulations were
performed with different interaction laws E(d)=1/d,
1/d 3 or exp(−d/l) and with different V(r) dependence.
Other simulations were also performed in conical and
cylindrical geometries (for details on these geometries,
see Part II). In all cases a 8(G) diagram having the
structure shown on Fig. 4 was obtained. Changing
any of these factors only affects the quantitative
values of the thresholds Gij and the shape of the curves
near these transition points [Fig. 4(b)].

4.3. 

The structure of Fig. 4 can be compared with
diagrams based on geometric arguments which were
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first derived by van Iterson (1907) when he produced
phyllotactic patterns by paving a cylinder, a cone or
a plane with hard disks. Most of van Iterson’s
diagrams are rather similar to those, examined in part
II, which give the divergence as a function of the size
of the primordia. Here, however, a diagram between
8 and G and based on geometry can be obtained by
stating that the new particle n is equidistant from the
two previous particles of appearance order n–i and
n–j. This is a good approximation in the case of a stiff
interaction (i.e. with a potential energy decreasing
rapidly with d). The potential then only depends on
the closest particles, and it is smallest along the
mediatrix of the segment joining them. This
approximation reduces our dynamical energetic
problem to a geometrical one and gives a relation
between 8 and G for each given pair (i, j ) of
parastichies. In order to achieve this calculation we
assume that the regime is stable with a constant
divergence 8. We take as an origin the formation of
a primordium of appearance order n at the position
r=Ro , u=0 (in polar coordinates). The position of a
previous primordium of order (n–q) is then given by
r=Ro exp(qG), u=q8. Writing that the primordium
of order n is equidistant from primordia n–i and n–j
provides a relation between 8 and G:

exp(2iG)−exp(iG) cos(i8)=

exp(2jG)−exp( jG) cos( j8).

For each given pair of parastichies (i, j ) this relation
gives a 8(G) dependence similar to that derived by
van Iterson paving a plane with exponentially
growing disks. These divergences are drawn in Fig. 4
(thin continuous lines). In this geometrical model, as
in all related geometrical models, the curve corre-
sponding to parastichies (i, j ) (with jqi ) is connected
at Gij with the two curves ( j, i+j ) and (i, i+j ). The
geometrical model gives an analytic prediction for the
values Gij of the successive thresholds (for instance the
first threshold occurs at Gc=Ln[2]10.693). Two
remarks are essential.

(1) If a very stiff type of interaction is used (e.g.
E(d)=exp[−r/l]) the values of 8(G) obtained
dynamically can be extremely close to those
obtained in the geometrical model [see Fig. 4(b)].

(2) Qualitatively, however, the dynamical diagrams
always differ from the geometric ones by an
essential feature: at the bifurcation near Gij the
segment of curve (i, j ) is only linked with ( j, i+j ),
while the curve (i, i+j ) appears as a new
disconnected branch. Only one continuous tran-
sition, from (i, j ) to ( j, i+j ), is thus possible.

In two recent articles Levitov (1991a, b) investi-
gated a minimum energy condition on helical lattices.
His work can be seen as a continuation of van
Iterson’s but with an additional optimization
condition. In a periodic cylindrical geometry he
assumed a regular lattice with repelling elements, and
looked at the lattice slope for which the interaction
energy is minimum. He showed that the compression
of the whole lattice produces a similar diagram also
with imperfect bifurcations. This theoretical work is
further from botanical reality, but the similarity of his
8(G) diagram with ours is striking. It shows that the
dynamics of the appearance of the new primordium
at the place of lowest repulsive energy, creates a final
structure corresponding to a minimum of the global
interaction energy. This coincidence is similar to the
relation which exists in crystallography between the
investigation of the energy of periodic structures and
of their growth mechanism. The geometrical reason
from which Levitov obtains disconnected branches is,
however, different from our dynamical one (Douady,
1994).

5. The Relevance to Botany of the Experimental and

Numerical Results

The results presented above give an understanding
of several characteristics of plant growth if the
temporal variation of G during ontogeny is taken into

F. 6. Four successive photographs of the experiment showing
the initial transient process with the formation of the first two
elements in a distichous position, the symmetry breaking at the
third, and the resulting formation of a spiral mode.
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F. 7. The breaking of the alternate symmetry in the simulation.
The figures to the left show the position of the particles and the
resulting equipotential lines. To the right are drawn the resulting
values of the potential on the central circle as a function of the
angular position 8. (a) For GqGc , there is only one minimum and
the incipient particle will appear in a position opposite the previous
one (distichous model). (b) Situation for GQGc when the third
particle is about to be formed. The first two particles create a
potential with two equivalent minima on each side of the axis. The
third particle will appear in either of these places. (c) Situation for
GQGc after the formation of the third particle. The potential has
lost its symmetry so that the two potential wells are no longer
equivalent; the position of formation of the fourth particle is
entirely determined. This situation is identical for all the particles
to be formed later. The third particle thus determines the direction
of rotation of the generative spiral.

(4) The complex structure of the inflorescence of
compositae.

We will also discuss four particular situations.

5.1.      

Let us consider here the simplest initial growth of
a seedling and examine the position of the first few
leaves. We will, for the time being, assume that there
is no initial asymmetry in the system. The first leaf will
thus form in a direction determined at random, this
being the first breaking of symmetry of the system. If
the growth occurs with a plastochrone ratio GqGc

then the leaves will successively grow in alternate
positions. If G is smaller than Gc , the system will
undergo a transition to a spiral mode. The experiment
and the simulation permit the observation and the
understanding of this transition. Figure 6(a–d) shows
the position of the first drops in an experiment
performed at G=0.3. The second drop, being repelled
only by the first one, will form in the opposite
position, but the third drop breaks the symmetry and
gives the system its chirality. All the following
elements have no choice and position themselves
along a spiral. The same phenomenon is observed in
the simulation and can be described in more detail. In
Fig. 7 we have drawn the isopotential due to the
repulsion of the first two drops, respectively, in the
cases GqGc Fig. 7(a) and GQGc Fig. 7(b). The
potential E(s) along the central circle’s perimeter
[Fig. 7(a)] has a single minimum at 8=180°, showing
that for large values of G only the alternate mode is
possible. In contrast, for GQGc [Fig. 7(b)] the
repulsion caused by the first particle is no longer
negligible and E(s) presents a symmetrical double
well. Random influences will decide in which of the
two possible positions the third particle will be placed.
This breaking of the symmetry is irreversible; the
potential well that the fourth particle (and all the later
ones) will form has become asymmetrical [Fig. 7(c)]
so that there is no longer a choice.

Returning to the plant, this means that the critical
event is likely to be the growth of the third leaf
following a decrease of G below Gc . The position of
this primordium, which can appear at random in one
of two equivalent positions, will irreversibly deter-
mine the direction of the winding of the generative
spiral. This has already been suggested by Sachs
(1991).

In most botanical cases, however, the production of
the first elements does not occur in a perfectly
axisymmetric environment because from the start a
shoot has lateral appendages such as cotyledons. We
will take these factors into account in Part III

account. We will show this botanical relevance for
four well-known characteristics of phyllotaxy:

(1) The equal probability of the formation of
generative spirals in both directions (Beal, 1873;
Allard, 1946).

(2) The predominance of the main Fibonacci series in
the parastichy orders, and the transitions for
which there exist quantitative data.

(3) The possibility of exceptions with parastichy
orders in secondary Fibonacci series.
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(Douady & Couder, 1996b) and show that the
random character of the choice persists. It explains
that in the main stems of spirally growing plants there
is an equal probability of finding left and right hand
generative spirals (Beal, 1873; Allard, 1946).

5.2.       

Ever since the early works of Schimper (1830),
Braun (1831) and Bravais & Bravais, (1837a, b)
the measurements performed on spirally organized
botanical elements have shown that most of the
parastichy orders are elements of the main Fibonacci
series. After the introduction of the plastochrone ratio
a by Richards (1951), several quantitative measure-
ments investigated experimentally the relation be-
tween the value of a and the observed phyllotaxy in
the apical region. In all these works a relation between
the evolution of the phyllotactic order and the time
evolution of a(t) was demonstrated. This evolution
occurs spontaneously during the growth of the plant.
The works of Schwabe (1971), Williams (1975),
Erickson & Meicenheimer (1977) and Meicenheimer
(1987) clearly defined the decrease of a(t) [or G(t)]
during the ontogeny from a seedling to the vegetative
regime, and from vegetative to flowering, and
demonstrated the corresponding increase of the
parastichy order. In contrast, in other types of
experiments, changes of the plant’s phyllotactic
organization were artificially induced by a chemical
treatment of the vegetative shoots (Maksymowych &
Erickson, 1977; Meicenheimer, 1979) or by photo-
periodic floral induction (Erickson & Meicenheimer,
1977). These changes could also be directly ascribed
to a simple change of the plastochrone ratio. In some
of these measurements (Maksymowych & Erickson,
1977; Erickson & Meicenheimer, 1977; Lyndon, 1978)
the evolution of the parastichy order and of 8 were
compared with corresponding values expected from
van Iterson’s diagrams. The agreement of the former
was more convincing than that of the latter, possibly
because the measurements were done during transient
regimes. These botanical experiments demonstrated
that, from the phyllotactic point of view, the main
dynamical characteristic is the continuous evolution
of the plastochrone ratio with time. As the older parts
create the conditions for the later growth through the
iterative appearance of the primordia, the phyllotactic
pattern depends on the whole history of its growth.
We can note that the evolution of a given apical
meristem in real time can now be watched using the
technique introduced by Green et al. (1991), which
should be a useful tool as it permits direct observation
of the iteration.

The best defined patterns are those produced by the
plant during periods where the plastochrone ratio
remains constant. For instance, during the growth of
a stem the plant can produce a large number of leaves
in identical conditions. Similarly the inflorescences
with the best defined spiral structures are those with
a large number of identical elements. It must be kept
in mind, however, that these steady regimes are
always reached after a transient. In the experiment as
well as in the simulation the best way to reach
botanically relevant patterns at a fixed value of G is
to start at a large value of G and then decrease it
progressively to a constant value. With such
transients, even if they are short, we always obtain
patterns with parastichy order i and j consecutive
terms of the main Fibonacci series. For instance, the

F. 8. Sketch of the positions of the neighbours of an incipient
particle. The new particle has an appearance order n and is shown
in black. The first configuration shown here (with particles drawn
as open circles) corresponds to a value of G where the parastichy
order is (i, j ). It is known from the periodicity rules that in this case
the neighbours of primordium n have appearance number n–i and
n–j. It is the repulsion of these two particles which determines the
exact position of n. We can note that the primordia [n, n–i, n–i–j,
n–j ] form approximately a rhomb. As n–j is older than n–i (iQj ),
this rhomb is inclined relative to the radial line passing by n. If the
factor G is reduced (say by decreasing the advection velocity V) the
particles move a smaller distance away from the apex so that their
relative positions are changed. The important feature is that the
distance between element n and element n–i–j decreases. At a value
Gij (not shown here) the element n will become equidistant from n–i,
n–j and n–i–j, and the pattern will be locally hexagonal. At this
point the repulsion caused by particle n–i–j is no longer negligible.
Because of the asymmetrical position of the rhomb, it will tend to
push n in the direction given by the arrow. When G is further
reduced the pattern shown in grey dots will be reached. The two
neighbours of the new primordium n have become spontaneously
n–j and n–i–j; it is their repulsions which now determine its
position.
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steady regime displayed on Fig. 5(a) was obtained
from initial distichous elements by an exponential
decrease of G(t) having a characteristic time of six
iterations. This result is a generalization of a similar
convergence that had been obtained respectively by
Mitchison (1977) in a simulation of inhibitor diffusion
in a cylindrical geometry and by Williams & Brittain
(1984) in purely geometrical simulations.

To understand this result, the key point is that the
whole diagram 8(G) (Fig. 4) is formed of non-branch-
ing continuous curves. The predominance in botany
of the Fibonacci series can be derived from this
particularity, and from the usual growth conditions in
plants. As G decreases during the shoot’s growth,
there is only one continuous way through all the
successive bifurcations; along this way the divergence
converges towards F and the parastichy numbers
follow the Fibonacci series.

It is, therefore, an essential feature that at each
threshold Gij , there is continuity between the mode
(i, j ) and the mode ( j, i+j ) while the mode (i, i+j )
appears disconnected. There is an intuitive way of
understanding what occurs at such a threshold.
Above Gij , the new particle n appears roughly
equidistant from n–i and n–j (Fig. 8). Its exact
position results mainly from the repulsion of i and j,
and the role of the other j latest particles is only to
prevent the possibility of appearance at other sites
around the apex. If no particles other than the j latest
were ever taken into account, for G tending to zero
the divergence would tend monotonically towards a
rational value [2p/(i+j )] and n would appear at the
same angular position as n–(i+j ). In fact, long before
reaching G=0, near Gij , the repulsion caused by this
element of order n–(i+j ) is no longer negligible and
n slides to avoid it. The situation at this point is not
symmetrical: above Gij the element n is always
angularly situated between n–(i+j ) and n–j (Fig. 8).
Below Gij , n thus slides between n–j and n–(i+j ) and
this corresponds to the selection of the transition. In
the geometrical models, the situation is the same, but
n is allowed to slide on both sides of n–(i+j ), because
a geometrical approach only assumes the positioning
of the new element between two older ones, so that
it corresponds to a minimum of the potential. In our
model, the condition that this position should be the
best, i.e. the absolute minimum, is added. As n–j is
older than n–i, it is clear that below Gij , the possible
position between n–j and n–(i+j ) has a lower
potential than between n–i and n–(i+j ) (Fig. 8). The
same fundamental selection would be obtained in a
geometrical model if a dynamical criterion of choice
for the position of the new particle was added
(Douady, 1996).

It is possible to reach an intuitive understanding of
this self organization by a simple argument. Let us
consider the system at a value of G corresponding to
the branch (i, j ). At this value the position of a new
particle is determined by the repulsion of the j most
recent elements. Let us suppose for a moment that all
the older elements have had their repulsive potential
artificially switched off. Then, as G is reduced, there
will be no bifurcation and the (i, j ) branch will be
followed all the way down to G=0. The angle that
will be reached at G=0 will be rational. For instance
an organization (1, 1) will lead to 8=180°=(1/2)2p;
(1, 2) to 8=120°=(1/3)2p; (2, 3) to 8=144°=
(2/5)2p; (3, 5) to 8=135°=(3/8)2p . . ., more gener-
ally a branch (i, j ) will tend towards (p/i+j )2p where
p is an integer called the encyclic number associated
to i+j (Bravais, 1837). The specificity of these
organizations is that when G tends to zero all the
elements tend to be aligned on i+j radial lines
(ortostichies). The new element (of order n) thus tends
to be radially aligned with the older element of order
(n–i–j ) and extremely close to it. In reality this is not
possible because the repulsive potentials are not
switched off and they forbid this proximity. The
bifurcation (i, j ) to (i, i+j ) is the reaction of the
system that prevents this proximity. The successive
bifurcations can thus be seen as a sequence of
‘‘repulsions’’ by rational organizations. The conver-
gence towards an irrational angle naturally results
from the avoidance of successive rationals.

The overwhelming predominance of the Fibonacci
series in botany can be derived from this result, and
from the fact that usually the evolution G(t) of the
plastochrone ratio with time is continuous and starts
from large initial values where only the main solution
exists.

5.3.    

Rare exceptions to this rule were first listed by
Bravais & Bravais (1837a, b). Of most common
occurrence are the bijugate phyllotactic modes where
i and j are twice numbers of the main Fibonacci series.
They are associated with the decussate modes of
growth and they will be interpreted in Parts II and III
(Douady & Couder, 1996a, b). The existence of
members of secondary series was also noticed by the
Bravais brothers. Data about their relative frequen-
cies can be found in Jean (1994) and references
therein. The most frequent amongst these exceptions
are parastichy orders (i=4, j=7) or (i=7, j=11)
which are related to the Lucas series built as the
Fibonacci series, but with initial terms one and three
(the divergence angle then tending towards 99.502°).
Less frequently they also found parastichy orders
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(i=5, j=9) related to the series with initial terms one
and four (the limit divergence angle being 77.955°) or
parastichy orders (i=5, j=7) corresponding to the
series with initial terms two and five (the divergence
being close to 151.135°).

As noted earlier, we find the possible spontaneous
formation of these modes when the transient leading
to small G is very short or when the simulation is
started directly at a low value of G. We observed that
the best way to obtain a pattern on a secondary
branch (i, i+j ) is to start directly at value of G in the
vicinity of Gij but below it, a region where this new
branch starts to be possible. For instance, the mode
(i=11, j=18) shown on Fig. 5(b) was obtained after
a transient starting from G=0.3, a value for which,
without any previous particles, the system stabilizes
directly in the (i=1, j=3) solution. The system thus
started on this branch and remained on it when G was
decreased. This corresponds to the common obser-
vation that when a sunflower inflorescence follows the
Lucas series its leaves already grow on this secondary
branch with a divergence angle close to 99°. We will
return to this point in Part III.

The other possibility for a plant to reach an
anomalous mode is that an external perturbation
generates a local necrosis of the apical meristem
disturbing the iteration. We observed such a
transition on a branch of a pine tree. It was bent
locally, showing that it had undergone a perturbation
during the growth. At this level the phyllotaxy
underwent a transition from (3, 5, 8) to the multiju-
gate spiral (4, 8). Such transients were obtained
artificially by Snow & Snow (1962) by microsurgery
of the apical meristem.

5.4.      

 

We can finally consider the spectacular ordering of
sunflower heads (Weisse, 1897; Richards, 1948; Ryan
et al., 1991). Inspection of the whole plant shows the
continuity of the generative spiral along which,
successively, leaves, bracts, ligulae, and then florets
have formed. As for the parastichy orders they first
increase following the rule (i, j ) to ( j, i+j ) to reach a
maximum at the periphery of the inflorescence.
Remarkably high Fibonacci numbers can be reached
in this region (e.g. i=144, j=233). The reverse
evolution is observed in the inflorescence itself.
Following a parastichy of the highest order j from the
periphery inward, it appears to be interrupted by a
change of order before the centre is reached. All the
parallel parastichies of order j undergo the same
transition at approximately the same distance from
the centre (Richards, 1948). In contrast the paras-

F. 9. Simulation of a sunflower head with 500 florets. (a) The
imposed time evolution G(n), n being the number of the deposited
particle. It is first decreased from 0.7–0.005 and then increased back
to 0.3. (b) The resulting evolution 8(G) showing the oscillating
convergence of 8 towards F as G is decreased. During the final
increase of G the values of 8 follow a slightly different path because
of the inertia of the system.

tichies of order i remain continuous in this region.
This corresponds to the annular region where the
patterns undergo transitions of the type (i, j ) to
( j–i, i ) (the normal transitions taken in reverse). A
geometrical analysis of these transitions in terms of
crystallographic defects can be found in Rivier (1988)
and Rothen & Koch (1989). This evolution can be
reproduced dynamically in the numerical simulation
if a time evolution of G(t) is introduced, correspond-
ing to the evolution of the plastochrone ratio during
the whole of the plant’s growth. The transition from
a vegetative to a flowering apex corresponds to a
decrease of G(t) because of the simultaneous slowing
down of the growth, the decrease of the plastochrone
and the increase of the apex size (Lyndon, 1990). With
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the completion of the flower head the growth stops;
in this process, as the apex shrinks G(t) increases.
We did a simulation of this type of growth using the
G(t) dependence, shown in Fig. 9(a). G first decreases
from one down to a very small value (G=0.001),
corresponding to a transient from the first leaves to
the first florets. At the end of the growth G increases
back satisfying:

G(n)=1/2 Ln[(N−n+1)/(N−n)],

where N is the total number of florets in the
inflorescence, and n the incipient floret number. This
particular law was chosen so that, even with
exponential growth, the final aspect of the simulation
would correspond to a constant surface density of
florets. The time evolution of the resulting divergence
angle is shown in Fig. 9(b). Three successive states of
the spatial patterns are shown in Fig. 10: the first
particles [Fig. 10(a)] have angular positions of the
leaves and bracts. With the decrease of G the highest
phyllotactic orders are then reached corresponding to
the formation of the periphery of the inflorescence
[Fig. 10(b)]. As G increases back the reverse
transitions between parastichy orders (i, j ) to
( j−i, i ) are observed [Fig. 10(c)], corresponding to
the well known inner structure of the inflorescence
(Bravais, 1837; Weisse, 1897; Richards, 1948; Rivier,
1988).

This simulation, as it leads to the formation of
very high Fibonacci orders, can become unstable.
The first type of destabilization is observed if we
record the divergence angle as a function of time.
While the iteration was perfect in the case shown
on Fig. 9(b), in other cases successive values of 8

can be very different from each other [Fig. 11(a)].
It is to be noted that such perturbations remain
practically invisible on the resulting pattern
[Fig. 11(b)]. This can be understood by close
inspection of the 8(n) recordings [Fig. 11(a)].
All the successive values of divergence angles are of
the type p8 or p822p where p is a non-zero positive
or negative integer. This shows that, as in the case
of Fig. 5(b), the anomalies correspond to complex
permutations in the appearance order of successive
elements. These permutations destroy the generative
spiral: the line linking the elements in their order of
appearance now runs back and forth around the
stem. The parastichies are, however, only weakly
affected, because these anomalies do not disturb the
angular order and only induce small disturbances in
the radial position of the elements. This result is
interesting as it shows the stability of the pattern
formation: for small G, the regularity of the order
of appearance is not very important. It is the local

F. 10. Patterns obtained successively at three stages of the
simulation of Fig. 9: (a) An early stage where G has already 39,6
decreased to its minimum value corresponding to the end of the
vegetative growth, and the formation of the first florets. The
divergence is already close to F. (b) An enlarged view of the
inflorescence bud. Half of the florets have been formed on the
border, which present the higher parastichy numbers, here (34, 55).
The equivalent of the transition from the bractae to the florets is
clearly visible. (c) The final increase of G generates the decrease of
the parastichy numbers from the border to the centre of the flower,
thus reproducing the observed patterns.

order around each primordium that is important, and
it is preserved even if the formation order becomes
irregular.

If the first decrease of G is too brutal, however, or
if too large a noise is introduced, 8(n) becomes
completely chaotic and destabilization of the pattern
is observed [Fig. 12(a)]. Such disorder was observed
by Hernandez & Palmer (1988) in an experiment
where they operated the receptacle surface so as to
isolate the central region. In this region, where the
formation of primordia started at very low G without
the influence of previous elements, disordered
patterns were obtained. Such disorder is sometimes
seen in the central region of sunflowers, and very
often in Chrysanthemum flowers sold commercially,
possibly because of the various artificial treatments to
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F. 11. Simulation similar to that of Figs 9 and 10 showing a
weakly disordered situation obtained during a faster decrease of G.
(a) Plot of the angle 8 between two successive elements as a
function of the element’s order. This angle is no longer constant but
all the observed values are of the type 8'=pF (modulo 2p), where
p is an integer (the values of p are given on the right of the plot).
This apparent disorder only corresponds to permutations in the
order of formation of the elements, similar to those shown in Fig.
5(b) [the maximum number p possible without disrupting the
structure is simply related to the parastichy numbers, it is roughly
( j–i )]. (b) The corresponding spatial pattern. The disturbances due
to permutations of the order of formation are not visible.

can remain constant even when V tends to zero,
provided T grows as 1/V. This will have obvious
causes in the simulations with the principles of Snow
& Snow.

(2) In their precise measurements of the leaf
positions on mature stems, Bravais & Bravais (1837)
found values of 8 very close to the ideal angle F, even
in the case where the parastichy numbers were very
small (e.g. i=2, j=3). This observation later
generated a long lasting hypothesis that the plants
form their elements at the perfect divergence angle F.
In this hypothesis the parastichy organization only
reveals successive rational approximations of an
underlying ideal irrational organization.

In fact, to each observed parastichy order (i, j )
corresponds a range of possible values of 8. Because
of the oscillation of the main curve of Fig. 4 the
particular value 8=F always lies within the ranges of
each of the orders (i, j ) of the main Fibonacci

F. 12. (a) Simulation similar to Fig. 11 with a faster decrease
of G leading to a strongly disordered situation. The smaller number
of bracts around the inflorescence is due to this rapid decrease. (b)
Photograph of a disordered commercial Chrysanthemum.

which they were submitted [Fig. 12(b)]. It is to be
noted that if the system, while G is small, jumps to a
secondary series, when G increases back it has no
way of evolving continuously because the branch is
interrupted. Once again, the normal Fibonacci
structure is the only one where all the transitions, for
both decreasing and increasing G, are always regular
and occur without disruption of the structure.

5.5.     



Finally, before concluding, four specific obser-
vations need to be clarified in the framework of this
article.

(1) On many branches of trees there is continuity
of the phyllotaxic pattern over several years. How
can this continuity exist in spite of the dormant
winter periods? We can note that our parameter
is determined by the product of T with V so that it
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series. If for high parastichy order the range of
values is narrow, it can be very wide for low orders:
for instance, an organization (i=1, j=2) can be found
for any value 180°q8q128°10' (van Iterson, 1907;
Adler, 1974). For this reason it might appear
surprising that the measurements performed on
mature stems (as done by Bravais & Bravais, 1837a)
show values of 8 close to F even in the case of
low parastichy order. These observations can be
understood as resulting from the difference of
organization near the apical meristem and along the
stem. This difference is because of the extension of the
internode in a long shoot type of growth. In this
process the angular positions of the primordia remain
unchanged but the pattern is stretched longitudinally.
This is clearly seen on Fig. 13 showing an Asparagus
shoot: the primordia are more tightly packed in the
region of the tip than further along the stem. The
parastichy order (i=5, j=8) observed at a macro-
scopic scale on this photograph in the tip region is
identical to the order of the primordia at the

periphery of the apex as revealed by dissection. But
further down the stem the pattern is stretched and the
order of the conspicuous parastichies is decreased (to
e.g. i=2, j=3 on Fig. 13). The divergence 8

determined in the apical region (138°8'q8q135°55'
for a mode i=5, j=8) retains along the stem a value
much closer to F than apparently needed by the low
order of the parastichies (142°6'q8q128°10' for a
mode i=2, j=3). As shown by Plantefol (1948) the
original parastichies can be found on a mature stem
by the observation of the contact parastichies of the
foliar scales when they are visible. These parastichies
can also be obtained by observation of the vascular
traces in the stem.

The belief that the divergence angles are always
close to an irrational angle can lead to errors. For
instance, the secondary series starting with two and
five has a limit angle 151.135°, but the measurement
of an angle of divergence of the order of 150° should
not be ascribed automatically to this type of solution.
It is more likely to be a mode (i=1, j=2) obtained at
large values of G [as the pattern obtained in the
experiment, shown in Fig. 3(b)]. In all cases a
complete definition of the phyllotactic mode requires
the measurement of a, 8 and of (i, j ), the order of the
contact parastichies in the apical region.

(3) In some plants (in particular cacti), Fibonacci
spirals are observed, but with a periodic arrangement
and thus a rational divergence (in these plants there
are both parastichies and well-defined orthostichies).
In all the cases we know of, the stems have polygonal
sections, suggesting that the axisymmetry of the shoot
is broken. The rational arrangements of the
primordia then result from the locking of their
position by their interaction with this structure of the
shoot. This is clearly visible in many cacti [e.g.
Echinocereus reichenbachi, according to Boke (1950)]
where the spines are located on the top of radial ribs.

(4) There are plants (e.g. Costus) in which the
leaves form one single spiral with a divergence angle
which can be small (spiromonostichous phyllotaxy).
The structure of Costus was used by Plantefol (1948)
as an argument to put forward his ‘‘foliar helices’’
hypothesis. This is an opportunity to discuss this
theory. Plantefol suggested that the dynamically
important structures for spiral phyllotaxy were what
he called the foliar helices (which are simply the
parastichies of one direction). His starting point was
that the incipient primordium forms in the continuity
of the existing parastichies. This is a valid description
of what is visually observed and we can remark that
the results of our experiments are compatible with
Plantefol’s description: even though the interaction is
repulsive, we also see [Fig. 3(c)] each new element

F. 13. The tip of an asparagus stem showing that the
internode’s secondary growth induces by elongation a change of the
parastichy order from (5, 8) in the tip region to a (2, 3) order further
along the stem.
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placing itself in the continuity of the existing
parastichies. Using this observation Plantefol then
proposed that there existed at the tip of these helices
‘‘generative centres’’ which repeatedly created the new
primordia. In this model, however, there is nothing to
determine the number of foliar helices, so the
predominance of Fibonacci numbers in botany is
not taken into account. Our results show that all
the dynamical models where the new primordium
forms in a position determined by either a repulsion
or an inhibition from the previous elements will give
rise to the organization of Fibonacci order. As
discussed above, this effect is fundamentally linked
with the system’s trend to avoid rational organization
because of the repulsion or the inhibition between
elements. This type of interaction, absent from
Plantefol’s theory of generative centres, appears to be
a necessary ingredient of any complete theory of
phyllotaxis.

Returning to Costus, how can it have a single
helix? The organization of a single spiral is impossible
in our model. With the help of Professor R. Hebant,
we performed dissections of apices of Costus afer
and found that each primordium forms a sheath
around the apex (as is common for monocotyledons)
and has a very asymmetrical shape. This can be
seen in several of the photographs of apices in
Kirchoff & Rutishauser (1990). In Costus, therefore,
the position of the available space appears to be
defined directly by the specific shape of the previous
primordium.

6. Partial Conclusions

The golden mean and the Fibonacci series both
have very specific mathematical properties. These are
translated into remarkable geometrical properties in
the Fibonacci spiral lattices. For this reason, many
researchers of the field have sought to explain the
appearance of these lattices by their functional
properties. In particular the fact that the divergence
angle tends towards an irrational value is often
thought of as being useful for the plant: the leaves
along the stem are never exactly superposed so that
their exposure to the sun is optimal. This appears to
be oversimplified: it assumes that all stems are vertical
and that the sun is always at the zenith. It also
neglects the fact that the leaves can modify their
orientation. For instance, in our latitudes, even a
normal vertical pine tree branch, with a Fibonacci
structure, exhibits anisophylly along the north–south
direction. Furthermore, in this regard the very
common decussate phyllotaxy should not exist as
leaves in this mode of organization are superimposed.

The main drawback of this type of interpretation is,
however, that it is finalistic. We do not deny that
selective pressure can favour some organizations,
however a mechanism for the formation of these
various structures has to exist before the selective
pressure chooses amongst them.

In the present article our aim was to demonstrate
that the dynamical hypothesis put forward by
Hofmeister (1868) formed the rule of an iterative
system which produces the observed spiral structures.
We showed that it was possible to obtain them in an
analogous physical experiment and in a numerical
simulation. The latter provided information about the
steady regimes, the transients and the evolution of the
pattern with the external control parameter. The
process proved very robust, being independent of
the chosen repulsive energy as well as of the velocity
law.

The main result of this work is given by Fig. 4,
which shows that for decreasing values of G the
system undergoes a sequence of imperfect bifur-
cations through which, along the main branch, 8

tends towards F. Botanically, the predominance of
the main Fibonacci series is linked with the fact that a
new stem always starts to grow with a large
plastochrone ratio in a range of values where only the
main series exists. During the later growth, with the
decrease of G, this branch will be followed steadily.
The abnormal cases can be related either to a growth
starting at a smaller value of G where the few observed,
abnormal branches are possible, or to a local
disturbance of the apex.

We have presented these partial results separately
because their discussion is simpler in the framework of
Hofmeister’s hypotheses. As noted above, however,
this system does not lend itself to relating the spiral
organizations and the whorled ones. For this reason
the results of this first part, although they already lead
to an understanding of many features, are based on too
strong a hypothesis (an externally fixed plastochrone).
The work of Snow & Snow (1952) provides another set
of hypotheses. In the second part of this article
(Douady & Couder, 1996a) we will see that they form
the rules of a more general iterative system. In this new
framework, all the results obtained here will be
recovered, but a larger range of self organized patterns,
including the whorled and multijugate modes, will
become possible (preliminary results were given in
Couder & Douady, 1993). In the third part of this
article (Douady & Couder 1996b) we will study in
which conditions the ontogeny leads either to a spiral
or to a whorled phyllotaxis. Direct comparison of our
results with botanical data will then become more
precise and will be presented.
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eines wissenschaftlichen Verständnisses der Blattstellung . . .
Flora. Iena, 18, 145–191.

B, L. & B, A. (1837a). Essai sur la disposition des
feuilles curvisériées. Ann. Sci. Nat. second series 7, 42–110.

B, L. & B, A. (1837b). Essai sur la disposition
symmétrique des inflorescences. 193–221, and 291–348; Ann. Sci.
Nat. second series 8, 11–42;

B, L.&B,A. (1839). Essai sur la disposition des feuilles
rectisériées. Ann. Sci. Nat. second series 12, 5–14, and 65–77.

C, M. G. R. (1978). Analysis of shoot apical growth of Picea
sitchensis seedlings. Ann. Bot. 42, 1291–1303.

C, J. M. & P R. (1987) Diffusion Model of Phyllotaxis,
Ann. Bot. 60, 377–389.

C, A. H. (1904) On the Relation of Phyllotaxis to Mechanical
Laws. London, Williams and Norgate.

CY.&D, S. (1993). Phyllotaxis: genetic determination
and self organization. In ‘‘Organisation et processus dans les
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